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Compensating the Non-linear Distortions of an OFDM
Signal with Neural Networks
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Abstract: This paper presents a non-linear
distortion compensator for OFDM (Orthogonal
Frequency Division Multiplexing) systems. OFDM
signals are sensitive to non-linear distortions and
different methods are studied to limit them. In the
proposed technique, the correction is done at the
receiver level by a higher-order neural network.
Simulations show that the neural network brings
perceptible gains in a complete OFDM system. In
this paper we first present the OFDM, and explain
why the non-linearities are a problem with this kind
of modulation. Then we explain how we chose the
neural network architecture, and finally some
simulation results are presented.

Introduction
Multicarrier modulation, and especially OFDM, is
now widely used for high speed communications
over frequency selective channels. Examples of use
are DAB (Digital Audio Broadcasting), DVB-T
(Digital Video Broadcasting on Terrestrial
networks), HiperLAN/II and IEEE 802.11a (radio
local area networks). An OFDM system uses
several low-rate sub-carriers to transmit data and
can be used in time dispersive channels, such as
multipath channels, with good efficiency [1].
Unfortunately, as an OFDM signal is the sum of
multiple sinusoidal waves, it has a high peak to
average power ratio (PAPR). This means that it is
very sensitive to the non-linearities of the high
power amplifier (HPA) [2]. The first obvious
solution is to use a very linear HPA, but this
solution is expensive and consumes too much
power for portable systems.
One of the methods proposed to solve this problem
is to reduce the PAPR by using special coding
techniques [3]. These methods usually select
codewords that produce low PAPR OFDM signals,
and can be combined with error detection and
correction systems.
Another method is to distort the signal before the
HPA to compensate for its non-linearity [4].
A third technique is to correct the non-linearity at
the receiver, using a post-distortion compensator.

Such an idea has been proposed in [5] and upgraded
in [6], where the compensator tries different
symbols, simulates the OFDM system, including
the HPA, and decides which symbol has been most
likely emitted. Another compensator, proposed
here, uses a neural network to correct the non-
linearity introduced by the HPA.

OFDM
The basic idea of OFDM is to transmit data on
parallel QAM (Quadrature Amplitude Modulation)
or QPSK (Quadrature Phase Shift Keying)
modulated sub-carriers. Let N be the number of

sub-carriers, 10, −= NkCk �
the N complex

symbols to be transmitted simultaneously, and
ST

the OFDM symbol duration. The complex envelope
of the ODFM base band signal is:
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The OFDM symbol can be easily generated using a
IFFT algorithm, and the reception can be done with
a FFT to recover the

kC symbols. The most

interesting property of OFDM is that the channel
equalisation can be done in the frequency domain,
after the FFT, and is a simple multiplication of the

kC symbols.

HPA
Then main source of non-linearities in a OFDM
system is the HPA. It is the device that amplifies
the signal to transmit it on radio waves. A simple
model for the non-linear HPA can be used [2]:

(2) ( ) ( ) ( )( )tSGtStS ⋅=0

And the function G depends on the chosen model
for the HPA. Usually the HPA is very close to
linear if the input signal is low enough, but when it
increases the amplifier distorts the signal, and
eventually it saturates. A parameter called Input



Back Off (IBO) indicates how much the transmitted
signal is distorted by the HPA. It is the mean-
saturation power ratio:
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Where
0A is the output saturation amplitude. The

lower the IBO, the more the signal is distorted.

Proposed system
To compensate for the non-linearities at the
receiver, the proposed system uses a neural network
before the QAM/QPSK demodulator, as shown in
Fig. 1.
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Fig. 1 Proposed system: the neural network corrects
the received symbols

The main problem is that the non-linearity from the
HPA is in the time domain, whereas the neural
network is in the frequency domain. It can’t be
moved before the FFT because in this case it would
have to do the channel equalising, which is much
more complicated in the time domain. In the
frequency domain the non-linearity is more
complicated: intermodulations appears between the
different carriers, so in fact each received symbol

kR′ is a non-linear combination of the N

transmitted symbols
kC .

The neural network has to reverse this combination:
it must find back the

kC symbols, given the
kR′

symbols.

Neural Network Architecture
We have shown [7] that the neural network doesn’t
have to learn the correction to apply to each carrier.
If it can do the compensation for one carrier, it can
be used to correct the other carriers, with a simple
shift of its inputs. This means that we can divide the
size of the output space by N , and thus have a
simpler network, with only one complex output.
Several neural network architectures are adapted for
multidimensional function approximation. The
most popular are RBF and multilayer perceptrons

[8]. The RBF network is not really adapted to this
problem because the input data is scattered in all
the dimensions, and not regrouped in a small
number of regions: the

kC symbols aren’t

correlated, and all have uniform distributions. So a
RBF would require approximately one prototype
per possible OFDM symbol. As the number of
different symbols rises exponentially with the
number of carriers this is not a viable solution.
Multilayer perceptrons are more promising for this
task. However the noticeable effect of the non-
linearities in the frequency domain is
intermodulation, which introduces higher-order
disturbance on the carriers. That’s why higher-order
networks [9] have also been studied.
Indeed the networks that have shown the best
performance for this task, both in terms of
convergence and generalisation, are higher order
networks, and especially the Ridge Polynomial
Network (RPN) [10].

Given an input vector dx �∈ , weight vectors
d

jiw �∈ , biases �∈jib , and an activation

function σ , the RPN’s output is given by:
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and d is the input space dimension.
Each product term in equation (4) can be seen as
the output of a jth order pi-sigma network (described

in [11]) with a linear activation function. M is the
number of pi-sigma networks used, and the order of
the RPN. Fig. 2 shows a diagram of the network
architecture.
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Fig. 2 RPN architecture. Only the first sum layer has
adjustable weights. The neuron on the last
layer is the only one to have a non-linear
activation function. Each PSNj is a jth order pi
sigma network.



An incremental learning method can be used on the
RPN. First, only the first-order PSN is trained.
Then, the second-order PSN is added to the
network, and trained. And so on, the other PSN are
added and trained one by one [10]. Each PSN is
trained using a method based on gradient descent
[11].
The RPN is able to use the higher-order correlations
of the input, and has fewer weights than the HPU
(higher order unit) net, a more generic higher-order
neural network. The presence of only one layer of
adjustable weights results in a faster convergence of
the gradient descent algorithm, compared to a
multilayer perceptron [11].

Simulations and Results
This architecture has been tested successfully on a
4-carrier OFDM system. The OFDM system uses
complex signals, whereas the neural network uses
real signals. To adapt the neural network to the
OFDM system, each complex signal has been
separated into two real signals, the real and

imaginary parts. Thus the input space dimension d
of the neural network is N2 , where N is the
number of carriers, and two RPN are used, one to
compute the real part of the output, and the other
for the imaginary part.
The activation function used depends on the
modulation used for the symbols

kC . With a QAM-

16 modulation [12], each
kC can take 16 different

values, and codes 4 bits of data. The real and
imaginary parts can each take 4 values, A , 3/A ,

3/A− and A− , where A is the modulation
amplitude. As a result, the neural network has to
produce 4 different values on its outputs, so a
special sigmoid function, with two intermediate
plateaux is used as activation function, as shown in
Fig. 3. Such activation functions have already been
used in digital communications [13].

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3 Activation function used to adapt the network
to a QAM-16 modulation. The targets of the
neural network can take 4 different values.

To improve the convergence speed, a Levenberg-
Marquardt algorithm [14] has been used instead of
the standard gradient descent, and it proved to be
very efficient. Each PSN needed less than 10
iterations to converge.
First a learning base is built with Cadence’s Signal
Processing Workshop (SPW) simulating an OFDM
system with 4 carriers, a QAM 16 modulation and a
channel with additive white gaussian noise
(AWGN), with a signal to noise ratio Eb/N0=13dB.
The amplifier used has an IBO of 0dB, which
means that the saturating power is equal to the
mean power of the input signal. 8192 symbols are
used as the learning base, and 8192 others as the
validation set.
Then the RPN is trained with the learning base. The

order M used is 7, as it seems to be the optimal
order for this problem. Fig. 4 shows the evolution
of the network Mean Square Error (MSE) during
the learning process. Each spike comes from the
introduction of a new pi-sigma network in the RPN.
Each increase of the network order improves the
performance, when the order is less than or equal to
7. When the order is greater than 7, the
performance doesn’t increase further. The training
of each PSN is stopped when the magnitude of the
weights update is less than a given threshold.
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Fig. 4 Training of the RPN with a 4 carrier OFDM
system, a QAM16 modulation, Eb/N0=13dB,
and IBO=0dB

Finally the neural network is simulated inside an
OFDM system to determine its performance as a
compensator. Fig. 5 shows the bit-error rate (BER)
of the whole system with and without the neural
network compensator. The curve for a system with
an IBO of 1dB without neural network is also
shown, for comparison. There are several manners
to comment these results.
First we can study the gain without changing the
amplifier or the signal power. With an IBO of 0dB
and a signal to noise ratio Eb/N0=16dB the neural
network divides by 2 the bit error rate of the signal.
This means that the error correcting code used in



the digital communication has fewer errors to
correct, and can be simpler, or permit a higher
information bit rate.
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Fig. 5 Bit error rate of the OFDM system with and
without the neural network. A QAM16
modulation is used on 4 carriers.

We can also want a fixed BER (10-2 as an example)
and an IBO of 0dB. In that case the system without
neural network requires a Eb/N0=16dB, whereas the
system with neural network requires only a
Eb/N0=13.5dB. This means that with the neural
network we can divide the power of the signal and
of the amplifier saturation by 1.8 (2.5dB) and still
have the same performance. An amplifier with a
lower saturation power is cheaper and consumes
less power, so it is very interesting for a portable
system.
Finally we can compare the curves of the system
without neural network and IBO=1dB, and the one
with the network and IBO=0dB. The two systems
have similar results, and the higher the signal to
noise ratio, the better the neural network gets. In
fact the neural networks does as if the OFDM
system had a higher quality amplifier. It manages to
compensate some linear distortions introduced by
the HPA.
These results are very promising and show that
neural networks can be efficiently used in a OFDM
system.

Conclusion
We have proposed a non-linear compensator for
OFDM signals based on a neural network. The
neural network is placed in the receiver, and
corrects the non-linearities introduced by the
transmitter’s high-power amplifier. The Ridge
Polynomial Network showed good results in
simulations and can improve the performance of
OFDM systems, or keep the same performance with
a lower power consumption. These results are very
promising for this compensator, but the system
currently only runs on 4-carrier modulations, and

we carry on our research to adapt it to other systems
with more carriers, closer to practical OFDM uses.
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