Résumé

Ce mémoire présente les travaux effectués au sein de l'équipe ETSN de Supélec, campus de Rennes, sur la réduction des effets des non linéarités dans une modulation OFDM, à l'aide de réseaux de neurones.

Tout d'abord, le mémoire commence par une introduction aux communications numériques et en particulier à la modulation OFDM. Aujourd'hui, plusieurs standards reposent sur cette technique de transmission, en particulier en raison de la simplicité de l'égalisation du canal, et donc la possibilité de transmettre avec plus d'efficacité des données sur des canaux multitrajets. Cependant le signal OFDM temporel est particulièrement sensible aux non-linéarités présentes dans l'amplificateur d'émission et diverses techniques sont étudiées pour diminuer ces effets.

Ensuite, les réseaux de neurones sont présentés, ainsi que leur utilisation dans le domaine de l'approximation de fonctions. Après avoir décrit les deux modèles de réseaux de neurones les plus courants, les réseaux d'ordre supérieur, tels que le RPN, sont introduits. Les techniques d'apprentissage de ces différentes architectures de réseaux de neurones sont également décrites.

Dans les différents correcteurs étudiés dans cette thèse, le réseau de neurones est placé dans le récepteur, après l'égalisation de canal. Son objectif est de corriger le signal reçu afin de compenser les effets des non-linéarités. Dans un premier temps le réseau de neurones est placé dans le domaine fréquentiel. Dans un système OFDM à 4 porteuses avec une modulation MAQ16, un amplificateur de type SSPA, un recul de 0 dB et pour un taux d'erreur binaire de , le correcteur avec un réseau RPN apporte un gain de 1,5 dB de rapport signal sur bruit. Cependant des difficultés apparaissent durant la phase d'apprentissage du réseau de neurones avec un nombre de porteuses supérieur.

Pour palier ce défaut, les réseaux de neurones décrits précédemment sont simplifiés en étant placés dans le domaine temporel. Ce système est plus proche des solutions déjà proposées pour la compensation des non-linéarités dans une modulation monoporteuse, avec toutefois des différences au niveau de l'égalisation du canal et de la nature de la fonction que doit accomplir le réseau de neurones. Un correcteur basé sur un réseau RPN a montré de très bonnes performances, même en augmentant le nombre de porteuses. Un gain de 8 dB a été mesuré pour un taux d'erreur binaire de dans un système OFDM à 48 porteuses, une modulation MAQ16 et un amplificateur de type SSPA avec un recul de 0 dB. Le système présenté permet donc dans ces conditions de diviser la puissance de l'amplificateur, et donc sa consommation d'énergie, par un facteur supérieur à 4 tout en conservant la même qualité de transmission.

Le correcteur à RPN dans le domaine temporel est ensuite simulé sur un canal multitrajet, afin de vérifier que la compensation reste efficace dans le cas d'un canal sévère. Enfin les deux approches proposées (fréquentielle et temporelle) sont comparées, au niveau des performances obtenues et de la puissance de calcul nécessaire dans le récepteur. Une comparaison avec une autre approche proposée dans la littérature est également présentée. Le correcteur temporel basé sur un RPN est bien moins complexe que le système cité, au détriment d'une légère dégradation des performances.

Ce mémoire se conclut par quelques perspectives de recherche pouvant prolonger les travaux accomplis durant cette thèse.